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SUMMARY

Identifying changepoints is an important problem in molecular genetics. Our motivating example is
from cancer genetics where interest focuses on identifying areas of a chromosome with an increased
likelihood of a tumor suppressor gene. Loss of heterozygosity (LOH) is a binary measure of allelic loss
in which abrupt changes in LOH frequency along the chromosome may identify boundaries indicative of
a region containing a tumor suppressor gene. Our interest was on testing for the presence of multiple
changepoints in order to identify regions of increased LOH frequency. A complicating factor is the
substantial heterogeneity in LOH frequency across patients, where some patients have a very high
LOH frequency while others have a low frequency. We develop a procedure for identifying multiple
changepoints in heterogeneous binary data. We propose both approximate and full maximum-likelihood
approaches and compare these two approaches with a naive approach in which we ignore the heterogeneity
in the binary data. The methodology is used to estimate the pattern in LOH frequency on chromosome 13
in esophageal cancer patients and to isolate an area of inflated LOH frequency on chromosome 13 which
may contain a tumor suppressor gene. Using simulations, we show that our approach works well and that
it is robust to departures from some key modeling assumptions.

Keywords: Change point detection; Correlated binary data; Heterogeneity; Loss of heterozygosity; Repeated binary
data; Spectral correlation.

1. INTRODUCTION

Loss of heterozygosity (LOH), sometimes referred to as allelic loss, is a term which indicates that at a
particular marker location only one of two different parental alleles present in normal DNA is present in
tumor cell DNA (Gruice et al., 1993; Ross, 1998). LOH is often summarized as a dichotomous outcome
which is positive if there is allelic loss and negative if not. This binary measure of genetic instability
is relatively quick, simple, reproducible, and can be determined from archival material. Thus, LOH is
particularly useful in population-based studies in which many samples obtained from archival material
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Fig. 1. Estimated LOH frequency for each of the 85 markers on chromosome 13. Area of the circle is proportional to
the # of informative markers at that location; x-axis is in units of Mb from the p-telomere. The exact chromosomal
location for the four markers between 17.85 and 18.95 Mb was unknown; however, their relative ordering is known.
For simplicity, we placed the four markers equally spaced over the interval.

are analyzed. Fine mapping using numerous microsatellite markers is a standard approach for identifying
chromosomal regions with high LOH frequency. Chromosomal regions with frequent allelic loss may
point to tumor suppressor genes; identification of such genes may help in understanding the genetics of
esophageal cancer, and lead to the development of early detection markers for this disease. Thus, we
were interested in identifying boundaries which will define chromosomal regions with increased LOH
frequency. The motivation for this work comes from a study examining LOH frequency in a group of
56 patients with esophageal cancer. LOH was measured at various markers on a series of chromosomes
(Huang et al., 2000; Hu et al., 2000; Li et al., 2001). The tumor marker is informative (i.e. one can
measure LOH) at a given marker only if the normal DNA is heterozygous at that location. The proportion
of informative markers varies widely by marker location. Figure 1 shows LOH frequency for 85 markers
placed along chromosome 13. The x-axis for this plot is chromosomal distance in Mega bases (Mb) from
the p-telomere (top of the short arm of the chromosome). The area of the plotting symbols in Figure 1 is
related to the number of informative markers at a given marker location. The wide variation in the area of
the points demonstrates that the proportion of informative markers varies widely by marker location. The
proportion of informative markers ranged from 0.11 to 0.96 (median = 0.57) for chromosome 13. The
identification of regions with particularly high LOH is not visually obvious from Figure 1. Thus, our goal
was to develop a statistically sound approach for identifying regions with inflated LOH frequency.

A complicating factor in the analysis of these LOH data is the large between-subject variation in
LOH frequency and the potential for marker measurements to be spatially correlated. Figure 2 shows a
scatter plot of the log-odds ratio versus chromosomal distance (Mb) for chromosome 13. A LOWESS
smoother (Cleveland, 1979) was applied to help identify the form of the dependence structure. The fact
that the smoothed curve is almost a horizontal line suggests that there is very little spatial correlation
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in these binary measurements. The nearly constant large log-odds ratio reflects very high exchangeable
correlation (i.e. large between-subject variation). The large between-subject variation suggests that there is
a large amount of heterogeneity in overall genetic instability across individuals. This heterogeneity needs
to be accounted for in our analyses. A common strategy for identifying deletion regions is to examine
the individual sequences along with the marginal frequencies. Such an ‘eye-ball’ approach may work
well when deletion regions are obvious. Unfortunately, for esophageal cancer, where the overall LOH
frequency is high (suggesting that the tumors are inherently genetically unstable), it is difficult to detect
deletion regions with this approach. In fact, Li et al. (2001) reported that this overall high instability was
striking, and has not been observed for other tumor types. For the esophageal cancer study, Li et al. (2001)
used an ad hoc approach to identify deletion regions on chromosome 13. They defined regions by having
at least 75% marginal LOH frequency over a contiguous region. Using this approach, they identified two
inflated LOH regions over the first 42 markers ordered by distance from the p-telomere (at the time of their
paper only data on the first 42 markers were available). Both regions are shown in Figure 1, where triangles
represent LOH frequency within these regions and circles represent LOH frequency outside these regions.
The first region includes four markers at locations 19.37, 19.49, 20.49, and 21.00 Mb (spanning a distance
of 1.63 Mb), and has some important candidate genes such as ectodermal dysplasia 2, gap junction protein
beta-2, and zinc finger protein 198, that may be tumor suppressor genes. The second region includes six
markers located from 31.74 to 46.61 Mb (spanning a distance of 14.87 Mb), and contains two markers that
are known to flank the BRCA2 gene which is under investigation for a potential role in esophageal cancer.
Although interesting, the procedure for selecting these inflated regions is ad hoc and lacks statistical rigor.
Our focus is on developing a more rigorous approach for the identification of deletion regions in this
study. The strongest evidence for a deletion region is large abrupt changes in LOH frequency around that
region. Thus, a multiple changepoint model formulation allows for such changes and easily allows for the
estimation of boundaries surrounding deletion regions.

The identification of multiple changepoints in repeated binary data is a common problem in genetics,
and this is an area in which various approaches have been developed. Much of this work focuses on
trying to organize sequences of DNA base information into homogeneous segments; this work has been
called segmentation analysis in the statistical genetics field. The typical data structure for this problem is
a long sequence of binary data (on the order of 10 000 markers) that needs to be segmented into different
regions with different mutation frequencies. Auger and Lawrence (1989) presented a computationally
feasible algorithm for obtaining the maximum-likelihood for multiple changepoints in long sequences of
independent data. Extensions of this work include Fu and Curnow (1990) who presented a maximum-
likelihood approach for sequences of independent categorical data which allows for minimum-specified
regions. Braun et al. (2000) developed methodology for fitting multiple changepoint quasi-likelihood
models with applications to fitting repeated binomial data with over-dispersion. Hidden Markov chain
models have been developed for estimating changepoints in long sequences (for example, Churchill,
1989). These models postulate that transitions between regions (i.e. changepoints) are governed by an
unobserved Markov chain. Changepoint estimation involves estimating the probability of a transition
given the data at each observation in the sequence. There have been a number of Bayesian approaches
to the multiple changepoint problem (Carlin et al., 1992; Stephens, 1994, among others). These models
require the specification of a prior distribution on the number and position of the changepoints, and are
computationally intensive.

In this paper we develop a frequentist approach for estimating multiple changepoint models for
sequences of binary data with heterogeneity across subjects. Specifically, we focus on the situation where
the binary sequences are long and are collected on multiple individuals as in our LOH/esophageal cancer
example. Our work supplements the work of Newton and Lee (2000) who developed a stochastic modeling
approach for inferring the location and effect of tumor suppressor genes. We present the changepoint
modeling approaches in Section 2. We also propose a procedure for choosing the number of changepoints
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Fig. 2. Log-odds ratio versus distance in Mb between all pairwise combinations of markers. The smoothed line is a
LOWESS smooth through the points.

which minimizes the chance of concluding that there are changepoint(s) when in fact there are none. We
use these models to estimate the boundaries of regions with inflated LOH frequency on chromosome 13
in our esophageal cancer study in Section 3. In Section 4 we demonstrate the properties of our procedures
with a series of simulation studies. The robustness of our approach to modeling assumptions is also
examined. A discussion follows in Section 5.

2. MODEL FORMULATION

Let Yi j be a binary response at each marker location for j = 1, . . . , J markers (ordered by distance
from the p-telomere) and for each individual i = 1, 2, . . . , I where I and J are the total number of
individuals and observations per individual, respectively. For R distinct regions with differing frequency,
we assume that Yi j is Bernoulli with proportion

logitP(Yi j = 1) =
R∑

r=1

βr I(ηr−1,ηr ] + bi , (1)

where bi is a subject-specific intercept which reflects different overall LOH frequency between patients,
βr are the effects of being in the r th region for r = 1, 2, . . . , R, and Ix is an indicator of being within
the interval x . In addition, η0, η1, η2, . . . , ηR are the boundaries of the R regions where η0 and ηR reflect
the beginning and end of the chromosome, respectively. Thus, we will estimate the R − 1 changepoints,
η1, η2, . . . , ηR−1, when we have R regions. Interest will focus on testing for the presence of disjoint
changes in the mean structure as well as estimating the boundaries. Of particular importance, for our
application, is to identify those regions with inflated LOH frequency. For simplicity we will assume that
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the bi are fixed effects. This is reasonable since we are considering the case in which we have many
binary measurements on each individual (85 LOH markers on chromosome 13). Model (1) reduces to a
Rasch model (Agresti, 1990) when R = J . Model (1) is also related to a model proposed by Korn and
Whittemore (1979) for long sequences of binary data on multiple subjects where each individual has a
unique fixed effect.

Note that model (1) only depends on chromosomal location in that markers need to be ordered by
their location. This formulation does not depend on the actual chromosomal distances since the model
assumes, conditional on bi , that the sequences of binary data are spatially independent. This assumption
is reasonable for our LOH example since Figure 2 demonstrates near spatial independence. Section 4
examines the effect of ignoring a moderate amount of spatial dependence on inference. Model (1) also
assumes that frequency is constant within a region. We examine the robustness of our inferences to this
assumption with a simulation presented in Section 4.

We wish to develop an approach for obtaining maximum-likelihood estimators of the model
parameters and selecting the number of regions and estimating the boundaries. Direct maximization
of the parameters for this model is computationally difficult for more then a few regions. Auger and
Lawrence (1989) developed an approach for long sequences of independent continuous data. We extend
this procedure to the situation where we have repeated binary data on multiple subjects.

We begin with the case of no patient heterogeneity (i.e. bi = 0 in (1)) and no missing data. For a fixed
number of regions R, the algorithm, which we will call the independence approach, is implemented with
the following steps:

1. Evaluate the log-likelihood for regions [l, m], l � m, with a constant frequency. We will denote
each of the J (J + 1)/2 log-likelihoods as

L1
l,m = Xlm log p̂lm + (Nlm − Xlm)log(1− p̂lm)

where plm is the probability of a positive response over the region [l, m], Xlm and Nlm are the
number of positive responses and the total number of binary markers for all I individuals over the
region [l, m], and p̂lm = Xlm/Nlm . The superscript in L1

l,m reflects the number of regions with
constant frequency (i.e. one region) over the interval [l, m].

2. Construct the maximum log-likelihood for one changepoint (two regions) over the sequence interval
[1, S] as

L2
1,S = max1�q<S−1

(
L1

1,q + L1
q+1,S

)
where L2

1,S denotes the maximum log-likelihood for two regions over the interval [1, S], and is
evaluated for S = 2, 3, . . . , J . Denote the estimated optimal changepoint for two regions over the
marker sequence [1,J] ( i.e. q maximizing L2

1,J ) as η̂1.
3. Construct the maximum log-likelihood for r regions over the interval [1, S] using the maximum-

likelihood for r − 1 regions over the intervals [1, q], q = r − 1, r, r + 1, . . . , S − 1 as

Lr
1,S = maxr−1�q<S−1

(
Lr−1

1,q + L1
q+1,S

)
,

where Lr
1,S represents the maximum log likelihood for r regions over the interval [1, S] and is

evaluated for S = r, r + 1, . . . n. The estimated optimal changepoints (MLEs) for r regions
over the binary sequence [1,J] (i.e. the changepoints corresponding to Lr

1,n) will be denoted by
η̂1, η̂2, . . . , η̂r−1.

4. Step 3 is repeated for r = 3, . . . , R.

The proof that L R
1,n is the maximum likelihood follows by mathematical induction and by noting that the

maximum likelihood for r − 1 regions over the interval [1, S] must include the maximum likelihood for
r − 1 regions over the interval [1, j] for some j < S (Auger and Lawrence, 1989).
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The independence approach assumes that there is no heterogeneity in the binary data. Heterogeneity
can be modeled by estimating bi for each individual in (1). We present the following algorithm to obtain
the approximate maximum-likelihood estimates of η1, η2, . . . , ηR−1:

1B Estimate the individual effects bi as logit(Y i.), where Y i. = ∑J
j=1 yi j/J . Denote these estimators

as ̂̂bi . Individuals with all 0s or 1s will be dropped from the analyses since they contribute no

information about the location of changepoints. The resulting ̂̂bi will be treated as known in the
following steps.

2B Evaluate the log-likelihood for regions [l, m], l � m, with a constant individual frequency, where

L1
l,m =

I∑
i=1

[
Xilm log p̂ilm + (Nilm − Xilm)log(1− p̂ilm)

]

where Xilm and Nilm are the number of positive responses and the total number of binary
measurements for the i th subject over the region [l, m]. Also note that p̂ilm is evaluated by

estimating βl,m in a logistic regression model where logitpilm = βl,m + ̂̂bi , and where ̂̂bi is

treated as an offset (McCullagh and Nelder, 1989). Thus, p̂ilm = logit−1(β̂l,m + ̂̂bi ), where
logit−1(x) = exp(x)/(1+ exp(x)).

We preceed with steps 2–4 as described above.

The above procedure provides us with an approximate maximum-likelihood since the parameters
that induce individual heterogeneity are estimated only in step 1B. The full MLE can be obtained with
additional computation. For a given number of regions R, we obtain the approximate MLE as described
in the steps above. We next fit a logistic regression where we estimate individual effects bi in the presence
of differing regions in the mean structure (estimated from the previous approximate MLE) and then
re-compute the approximate MLE treating the estimated bi as offsets. Specifically, for obtaining the
maximum-likelihood for R regions, we fit the model

logitP(Yi j = 1) =
R∑

r=1

βr I(̂ηr−1 ,̂ηr ] + bi , (2)

with η̂1, η̂2, . . . , η̂R−1 obtained from step 4, η̂1 = 1, and η̂R = J . We then iterate between steps 2B, 2–4
and expression (2) until we get convergence.

It is well known that maximum-likelihood estimation of the model parameters for (1) will be
inconsistent for fixed J as I → ∞ since the number of parameters goes off to infinity (Neyman and
Scott, 1948). However, this will not be a practical problem when the number of binary measurements on
each individual is large as in our motivating example and in many molecular genetics studies.

Model selection is a difficult and important problem in identifying multiple changepoints. We propose
a penalized likelihood approach for selecting the number of changepoints. Specifically, we implement
the algorithms for R = 2, . . . , J and choose the number of changepoints that minimizes the penalized
likelihood

PLIK(R) = −2L R
1,J + 2(R − 1)c, (3)

where R is the number of regions and c is a penalization constant. Various forms of penalized likelihood
have been considered in the literature. Akaike’s information criterion (AIC) (Akaike, 1973) fixes c = 1.
The Bayesian information criterion (Schwartz, 1978) fixes c = log(sample size)/2.
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A major inferential goal for our motivating example is to determine whether there are any regions of
inflated LOH frequency. Since searching for a tumor suppressor gene is expensive and time consuming,
we choose a penalty function so that we would rarely identify one or more changepoints (more than one
region) if, in fact, there were none. Thus, we controlled the type I error rate of identifying one or more
changepoints when none existed at 5%. The penalization constant c needs to be computed separately
under the independence, approximate MLE, and full MLE approaches. For the independence approach,
we estimate c with the following steps:

(i) We estimate the model parameters with no changepoints from the data. This is done assuming a
constant frequency over all the binary sequences. Specifically, p̂ = X1J /N1J .

(ii) We simulate 10 000 datasets where sequences of independent Bernoulli data are generated with
proportion p̂. We implement steps 1–4 for R = 1, 2, 3, . . . , J . The penalization constant c in (3) is
calculated such that 95% of the time PLIK(R) achieves its minimum at R = 1.

For the approximate and full MLE approach allowing for patient heterogeneity, we estimate c as
follows:

(i′) We estimate the model parameters with a constant frequency for each individual, p̂i = Xi1J /Ni1J .
(ii′) We simulate 10 000 datasets where sequences of independent Bernoulli data, for each patient, are

generated with proportion p̂i . We implement the approximate or full MLE as previously described.
The penalization constant c is chosen as described in (ii) above.

As we will see in Section 4, in most practical situations where the change in frequency between regions
(at the changepoints) is large, this penalty function will perform well in estimating the correct number of
changepoints.

The parametric bootstrap (Efron and Tibshirani, 1993) was used to assess the variability in changepoint
estimation and to estimate confidence intervals for the marginal means, which can be displayed
graphically. Bootstrap samples were obtained by generating data from model (1) with parameter estimates
(including number and location of changepoints) and missing data pattern obtained from the original
dataset (10 000 bootstrap samples). For each bootstrap sample, parameter estimation and model selection
was done as described earlier. Ideally, we would need to re-estimate the c (using (i′) and (ii′)) for model
selection in every bootstrap sample. This is not computationally feasible. One advantage of the parametric
as compared to the nonparametric bootstrap is that c is very stable over replicate samples. Therefore,
we use the c estimated from the actual data to choose models in all bootstrap samples. Pointwise 95%
confidence intervals around estimated marginal means, obtained from the bootstrap, are used to assess
variability. In addition, other measures of variability are presented, such as the proportion of times
(bootstrap samples) a particular marker is included in the region with the highest LOH frequency.

3. ANALYSIS

We fit the full MLE, approximate MLE and the independence approaches to the LOH data on
chromosome 13. Table 1 shows the estimated changepoints (for up to five changepoints) and the associated
penalized likelihood for models fit to the data for each of the three approaches. For each approach,
the optimal number of changepoints corresponds to the model with the smallest penalized likelihood.
Based on the simulation methods described in Section 2, the penalization constant was chosen as
c = 5.01, 5.01, and 4.84 for the three approaches, respectively. These penalization constants are larger
than those prescribed by AIC (c = 1) or BIC (c = log(56 × 85)/2 = 4.2). The approximate MLE
and the full MLE resulted in identical changepoint estimates for each of the models. The penalized
likelihood values were similar for the two approaches. Although the independence model with the smallest
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Table 1. Estimated changepoints and penalized likelihoods for chromosome 13 under the
A. full MLE, B. approximate MLE, and C. independence approaches

# of changepoints Estimated changepoints1 Penalized likelihood
A. 0 2417.8

1 18.77 2386.1
2 16.38 18.08 2358.9
3 16.38 18.77 21.00 2350.8
4 16.38 18.08 19.25 21.00 2333.1 ←
5 16.38 18.08 19.25 21.00 27.23 2334.5

B. 0 2417.8
1 18.77 2386.7
2 16.38 18.08 2360.2
3 16.38 18.77 21.00 2353.6
4 16.38 18.08 19.25 21.00 2336.4 ←
5 16.38 18.08 19.25 21.00 27.23 2338.2

C. 0 3595.1
1 18.08 3582.3
2 16.38 18.08 3564.6
3 16.38 18.08 21.00 3567.5
4 16.38 18.08 19.25 21.00 3557.9 ←
5 16.38 18.08 19.25 21.00 21.76 3561.8

1 Distance in Mb from the p-telomere

penalized likelihood (four changepoints) resulted in the same changepoints as the methods that accounted
for heterogeneity, changepoint estimates were different for other numbers of changepoints. A comparison
of the three approaches on the LOH data leads one to question (i) whether the additional computational
intensity of the full MLE approach is worth the effort, and (ii) whether the independence model does
poorly for heterogeneous data.

Figure 3 shows the estimated changepoints and marginal LOH frequencies on chromosome 13 for the
56 esophageal cancer patients. Parametric bootstrap pointwise 95% confidence intervals demonstrate that
the marginal frequencies can be estimated with reasonable precision. We identify an inflated region that
included four markers at locations 19.37, 19.49, 20.49, and 21.00 Mb. This inflated region is the same
region identified by Li et al. (2001) using their ad hoc method. Figure 4 shows the proportion of bootstrap
realizations (10 000 bootstrap samples were performed) in which a specific marker is located within the
region with the highest LOH frequency. Markers at 19.37, 19.49, 20.49, and 21.00 Mb are contained in
this inflated region in 96, 99, 99, and 97% of the bootstrap samples, respectively. Thus, this inflated region
is precisely estimated. As mentioned in the Introduction, there are numerous genes in this region which
are thought to play a role in esophageal cancer. Future laboratory work will focus on identifying whether
any of these genes are tumor suppressor genes.

4. SIMULATIONS

We conducted a series of simulation studies to examine the properties of the various approaches.
Our first simulation corresponded to the LOH example (I = 56 and J = 85). We simulated data with
changepoints at locations 16.38, 18.08, 19.25, and 21.00 Mb (see Figure 3) with parameters (βr and bi )
chosen as the ones estimated using the full MLE approach on our LOH data. Thus, there were large
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Fig. 3. Approximate maximum-likelihood estimates of the marginal LOH frequency (lines) and changepoints for
markers on chromosome 13. Pointwise 95% confidence intervals are presented. Estimates and intervals are only
presented up to a distance of 30 Mb from the p-telomere. Estimates and intervals are constant for all markers greater
than 21 Mb from the p-telomere.
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Fig. 4. The proportion of bootstrap realizations (10 000 bootstrap samples were performed) in which a specific marker
is located within the estimated region with the highest LOH frequency.
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Table 2. Simulation in which data were generated correspond-
ing to the four changepoint model for chromosome 13. Change-
points and marginal frequencies are given in Table 1 and in
Figure 3. Changepoints are generated at a distance of 16.38,
18.08, 19.25, and 21.00 Mb from the p-telomere. Penalization
constants, c, were calculated separately for each approach as
described in Section 2. 10 000 simulated datasets with the same
data structure (I = 56 and J = 85) and missing data pattern

were generated

Frequency of models selected %
# of changepoints Full m.l.e Approximate MLE Independence

0 0 0 0
1 0 0 0
2 0 1 14
3 0 0 3
4 95 96 83
5 4 3 0
6 0 0 0

differences in the frequency across regions and substantial patient heterogeneity. Data were generated
with the same frequency of missingness (due to uninformative markers) as in the example. The simulation
results were based on 10 000 simulated datasets. The penalization constants for the full, approximate, and
independence approaches were chosen as the values estimated for the example (Section 3). Table 2 shows
the results of this simulation. The full and approximate MLE approaches detected the correct number of
changepoints 95 and 96% of the time. In fact, the results for the approximate and full MLE approaches
were very similar across realizations; 99% of the simulated datasets resulted in a final model with the same
number and location of changepoints for the two approaches. The changepoints at locations 16.38, 18.08,
19.25, and 21.00 Mb were detected 99, 99, 91, and 84% for both the full MLE and the approximate MLE
approaches. Additional simulations, with varying sample sizes (I and J ) and number of changepoints also
showed that the full and approximate MLE had very similar operating characteristics (data not shown).
Thus, there is no benefit for the additional computational intensity of the full MLE approach. These
simulations also showed that edge effects can be important. Specifically, we saw that it is more difficult to
identify a changepoint near the edge of a chromosome than in the middle.

Our approach for choosing the penalization constant in (3) appeared to work well. We consistently
saw that, for large differences in frequency between regions, the correct number of changepoints was
identified with high probability using this approach (see Table 2). For the simulation presented in Table 2,
the penalization constants were estimated to be c = 5.01 for the full and approximate MLE approaches,
respectively. This penalization is larger than either the AIC or BIC penalized likelihood approaches (c = 1
for AIC and c = log(56× 85)/2 = 4.2 for BIC). Thus, one would expect that AIC and BIC would have
a tendency to choose models with too many changepoints. Additional simulations as described in Table 2
(four changepoints) were performed to verify this. The AIC penalization chose models with four and five
changepoints in 3% and 97% of the simulated datasets. The BIC penalization chose models with four and
five changepoints in 92% and 8% of the realizations. In either case, our procedure outperformed these
traditional penalized likelihood approaches.

The independence approach did not perform as well as the approximate or full MLE (Table 2). There
was a tendency for the independence approach to choose models with too few changepoints; a model
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with the correct number of changepoints was only chosen in 83% of the realizations. The changepoints at
locations 16.38, 18.08, 19.25, and 21.00 Mb were detected in 98%, 98%, 81%, and 77% of the simulated
datasets with the independence approach. With additional simulations (again with different sample sizes
and number of changepoints), we consistently showed the poorer performance of the independence model
(data not shown).

Simulations were performed to examine the sensitivity of inferences to important modeling assump-
tions. We examined robustness to the assumption of spatial independence by generating data according to
the model

logitP(Yis( j) = 1) =
R∑

r=1

βr I(ηr−1,ηr ] + bi + εi,s( j), (4)

where s( j) is the chromosomal distance in Mb from the p-telomere for the j th marker and εi,s( j) is a
Gaussian process called the Ornstein–Uhlenbeck process (Karlin and Taylor, 1981) which has mean zero
and spatial covariance structure given by

Cov(εi,s( j), εi,s( j ′)) = θ1 exp(−θ2|s( j)− s( j ′)|).
We simulated data according to (4) with the number and location of changepoints, βr , and bi estimated
from the example data and with the same missing data pattern as the example. We chose θ1 = 1
and θ2 = 0.02, which induced a sizable spatial dependence which diminishes slowly with increasing
chromosomal distance. With these parameters the latent random variables εi,s( j) have correlation 0.82,
0.67, and 0.45 when they are separated by 10, 20, and 40 Mb, respectively. This is substantially higher
spatial correlation than we observed in our LOH dataset. The penalization constant was chosen by
simulating 10 000 datasets according to (4) with parameters chosen as those estimated from the LOH data.
The constant c was chosen by estimating each pi by averaging the simulated sequence for that individual
and then proceeding with step (ii′) as described in Section 3. The approximate MLE approach (which
ignores spatial dependence) chose the correct number of changepoints in 70% of the 10 000 simulated
datasets. There was a tendency to choose the optimal number of changepoints too low; for example, only
two changepoints were identified in 25% of the simulated datasets. The changepoints at locations 16.38,
18.08, 19.25, and 21.00 Mb were detected in 91, 88, 67, and 62% of the simulated datasets. Figure 5
shows the proportion of simulated realizations in which a specific marker is located within the estimated
region with the highest LOH frequency. Even with sizable spatial correlation, the true high region located
between 19.37 and 21.00 Mb is included within the identified high region in most of the simulation
realizations. Markers at 19.37, 19.49, 20.49, and 21.00 Mb are included within the identified high region
in 86%, 88%, 88%, and 86% of the simulation samples.

We examined the robustness of inferences to the possibility that LOH changes according to a smooth
rather than a changepoint process. We fit a model with a separate marker and individual effects,

logitP(Yi j = 1) = β j + bi , (5)

to our LOH data. We simulated datasets according to (5) with parameter values estimated from the
example dataset and with missing data pattern as in the example. The resulting marginal mean for this
model is shown in Figure 6. As in the observed data we see a large ‘peak’ between markers 19.25 and
21.08 Mb and a smaller increase between 31.74 and 46.61 Mb (these correspond to the two regions
identified by Li et al. (2001) as deletion regions). Interest focuses on whether we are able to identify these
regions. Figure 7 shows the proportion of simulated datasets in which a marker is included within the
estimated region with the highest LOH frequency. The figure demonstrates that one of these two regions
is most often chosen as the region with highest LOH frequency. Specifically, markers at locations 19.37,
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Fig. 5. The proportion of simulations in which a specific marker is located within the estimated region with the highest
LOH frequency for data generated with sizeable spatial dependence.

19.49, 20.49, and 21.00 Mb are in this highest region in 44%, 53%, 56%, and 56% of the realizations, and
markers at locations 31.74, 31.79, 34.52, 37.14, 38.88, and 46.61 Mb are in the highest region in 27%,
28%, 28%, and 26%, 22%, and 12% of the realizations. Thus, our procedure works well in identifying
regions of high frequency even if the data do not truly follow a changepoint process.

5. DISCUSSION

We developed a procedure for identifying changepoints for heterogenous binary data which was
motivated by our scientific interest in identifying a tumor suppressor gene for esophageal cancer. Our
scientific interest was on localizing regions with high LOH frequency so that candidate tumor suppressor
genes could be identified. This was particularly challenging for the LOH data since we had a high overall
LOH frequency and a large between-subject variation in this frequency. Using our methodology, we
localized an inflated region which included four LOH markers; this region contains a set of candidate
genes that will be studied further in future studies using more refined genetic procedures (e.g. mutational
analysis).

We proposed an approximate MLE approach which accounted for heterogeneity and compared the
performance of this procedure to an independence model and a full MLE approach. The approximate
MLE approach had improved performance relative to the independence model, and there was no apparent
advantage in applying the more computationally intensive full MLE approach. The model accounts for
heterogeneity in LOH frequency through estimating individual-specific intercepts. Although the approach
is appealing since it makes no distributional assumptions on the individual effects bi , it results in
inconsistent estimation when J is small (this was not an issue in our LOH example since J = 85). An
extension of conditional logistic regression (Agresti, 1990) for the multiple changepoint problem would be
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Fig. 6. Marginal means estimated from model (5).
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Fig. 7. The proportion of simulations in which a specific marker is located within the estimated region with the highest
LOH frequency for data generated with a smooth curve and analyzed with a changepoint model.
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appropriate for small J ; this is an area of future research. Our approach treats heterogeneity as a nuisance
and, therefore, would not be useful for making inference about the heterogeneity across individuals. A
binary random effects model (i.e. generalized linear mixed model) formulation may be more appropriate
when estimating the heterogeneity is of interest. The development of such a random effects model with
multiple changepoints is an area for future research.

The model assumed that there is no spatial correlation in the binary sequences. This was a reasonable
assumption for the LOH data since spatial dependence was negligible (see Figure 2). In addition, we
showed using simulation that our methodology worked well in identifying inflated regions even with
sizeable spatial correlation. However, when spatial dependence exists, an approach which incorporates this
spatial correlation would be expected to have increased performance. Developing multiple changepoint
approaches for spatially correlated data is an area of future research. Our formulation also assumed that
LOH frequency follows a changepoint structure. Using simulations, we showed that the highest regions are
often identified even when the changes in LOH frequency were more gradual than a multiple changepoint
structure would allow.

Our scientific strategy was to localize regions with inflated LOH frequency, identify candidate genes
within those regions, and use other genetic techniques to test whether these candidate genes are, in fact,
tumor suppressor genes. Since searching for tumor suppressor genes is expensive and time consuming,
we chose a penalty function so that we would rarely identify a changepoint if, in fact, there were none.
Specifically, we estimated the penalized constant through simulation by controlling the type I error rate
at 5% of falsely concluding that there were more than one region (one or multiple changepoints) when in
fact there was only one region (no changepoints). Our simulation studies showed that, in most practical
situations in which the change in frequency between regions (at the changepoints) was large, this penalty
performed well in estimating the correct number of regions. Our procedure did better than AIC or BIC,
which penalize too little, and generally resulted in choosing models with too many regions. An alternative
to our penalization procedure is a Bayesian approach in which a prior distribution for the number of
changepoints is chosen so that 95% prior probability is placed on the zero-changepoint model. A Bayesian
approach to our problem is an area of future research.

We had other scientific interests in this study including whether the pattern in LOH frequency varies
across family history status (i.e. did a first or second degree relative have gastrointestinal cancer?).
Such a comparison may help distinguish whether important genetic mutations are somatic or germline.
Developing methods for comparing the processes between groups is an area of future research.
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